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Introduction: gyrokinetics for stellarators
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• Gyrokinetics is a successful model for understanding transport in fusion 
plasmas, e.g. microturbulence and neoclassical driven.

• Stellarator plasmas can be turbulent, and turbulence is observed to dominate 
transport in optimized stellarators -> one need for stellarator gyrokinetics.

• Edge physics is important for both tokamaks and stellarators, but few codes 
have been able to model it -> XGC was created for this purpose.

• Stellarator edge physics presents additional challenges, e.g. islands and 
stochastic regions.

• Gyrokinetic code XGC has been extended for stellarator physics.



Introduction: explicit electromagnetics
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• The electromagnetic (ẟB⟂) gyrokinetic system requires a choice of 
formulation which numerically implies the use of implicit schemes or the 
‘cancellation problem’ which grows with β and inversely with ms and k⟂⍴s.

• The Hamiltonian approach, affected by the cancellation problem, may be 
most performant.

• We implement mitigation techniques to minimize this problem and test them 
with delta-f simulations of circular conventional and spherical tokamaks.

• Total-f XGC is uniquely placed to treat electromagnetic edge physics, e.g. ELM 
onset; almost all EM GK simulations so far are with delta-f codes.
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Overview: Gyrokinetic code XGC for stellarators
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• XGC is a gyrokinetic Particle-in-Cell (PIC) code for high fidelity modelling:
• Gyrokinetic total-f
• Electromagnetic (ẟB⟂) (this talk!)
• Non-linear multi-species collisions
• Whole volume to first wall

• Stellarator version (this talk!) is currently:
• Gyrokinetic delta-f
• Electrostatic (EM ongoing…)
• Collisionless
• Whole volume to first wall (ongoing…)

Ultimate goal: full high fidelity XGC capability with stellarator geometry



XGC for stellarators - Numerical implementation
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Potentials calc’d
on nodes

Nodes field 
aligned to calc E||

Unstructured mesh capability 
allows smooth treatment of 
edge region, with solver

M. Cole et al., Phys. Plasmas 26 032506 (2019)
T. Moritaka et al., Plasma 2 (2), 179-200, (2019)
M. Cole et al., Phys. Plasmas 26 082501 (2019) 

PIC markers pushed 
in R, Z, ϕ



Verification: Linear W7-X ITG benchmark
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• Defined Wendelstein 7-X high mirror VMEC equilibrium (KJM)

• R0 = 5.5 m
• a0 = 0.505 m
• B0 = 2.41 T
• Ti(s = 0.5) = Te(s = 0.5) = 1 keV
• ITG driven unstable by quasi-local

temperature gradient: 

• From experience, Wendelstein 7-X is the most challenging of the stellarator 
geometries numerically.

T. Klinger et al., Nucl. Fusion 59 112004 (2019)



Verification: Linear W7-X ITG benchmark
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Verification: Linear W7-X ITG benchmark
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𝛾 “rollover”
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W7-X and QUASAR comparison
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• Original EUTERPE case 
included Wendelstein 7-X and 
LHD.

• Extend this to PPPL’s 
QUASAR/NCSX, keeping T, n 
profiles the same.

Negative iota shear (positive q shear) case 
used – lowest turbulent transport with local 

GENE simulations. 

S. Lazerson et al., Phys. Plasmas 26 022509 (2019)



W7-X and QUASAR comparison
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• Original EUTERPE case 
included Wendelstein 7-X and 
LHD.

• Extend this to PPPL’s 
QUASAR/NCSX, keeping T, n 
profiles the same.

• Normalised growth rates are 
almost the same for all three 
devices (see right, LHD 
growth rates followed W7-X). 

M. Cole et al., Phys. Plasmas, under review (2020)



W7-X and QUASAR comparison – mode numbers
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W7-X and QUASAR: mode structure differences
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W7-X and QUASAR comparison – mode structures
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Poloidal shift predicted theoretically due to radial shear 
in iota, mode frequency; stronger at higher growth rate. 

Y. Camenen et al., Nucl. Fusion 51 073039 (2011)



Global nonlinear verification: XGC1 tokamak benchmark 
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Global nonlinear ITG in QUASAR: heat flux

27th February 2020 PPPL Theory Seminar, M. D. J. Cole et al.

φ

1.2 1.4 1.6 1.8
r (m)

-0.2
-0.1

0
0.1
0.2

z 
(m

)

-4

-2

0

2

4

t = 0.15ms

φ

1.2 1.4 1.6 1.8
r (m)

-0.2
-0.1

0
0.1
0.2

z 
(m

)

-50

0

50

t = 0.3ms

M. Cole et al., Phys. Plasmas, under review (2020)



Global nonlinear ITG in QUASAR: heat flux
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Poloidal localisation (global 
feature) weakened at peak



Progress towards a whole volume capability
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• Poisson solver test with constant charge 
distribution (above left – electrostatic potential; 
right – relative error to analytical solution).

• HINT3D equilibrium test with islands, stochastic 
regions (left, core).

T. Moritaka et al., Plasma 2 (2), 179-200, (2019)
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Electromagnetic gyrokinetics: cancellation problem 
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Symplectic formulation (v||) Hamiltonian formulation (p||) 

• No cancellation problem.

• Implicit methods required 
(for XGC: B. Sturdevant, L. 
Chacón, M. Adams)

• Cancellation problem scales as:

• Explicit schemes possible (RK4 
etc.).

p|| = mv|| + qA||



Electromagnetic gyrokinetics: mixed formulation
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A. Mishchenko, M. Cole, R. Kleiber and A. Könies, Phys. Plasmas 21 052113 (2014)
A. Mishchenko, A. Könies, R. Kleiber and M. Cole, Phys. Plasmas 21 092110 (2014)

• Combine Hamiltonian and symplectic
formulations in derivation of GK system:

• Introduces new degree of freedom:

• Cancellation problem occurs only in A||
(h): 

reset phase space at each timestep (right).

p|| = mv|| + qA||
(h)



ITG-KBM transition benchmark 
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A||

φ

• Hamiltonian equations alone (mi/me=100) -> 
realistic electron mass with mitigation techniques.

M. Cole et al., in preparation



Electromagnetics in spherical tokamaks
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• Predicting the KBM transition point is a key 
research question for spherical tokamaks.

• XGC NSTX-like case, with mitigation techniques:
• R0 = 0.85 m
• a0 = 0.67 m
• B0 = 0.45 T
• q0 = 1.21, q95 = 3.86
• 𝜅 = 2.2
• βs=0.25 = 2.34%

• 𝛾 = 54 kHz (159 kHz without elongation)
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Summary

• Delta-f electrostatic core physics with XGC-S has been successfully 
benchmarked with EUTERPE, GENE-3D.

• First physics studies in NCSX/QUASAR geometry have been performed into the 
turbulent phase. 

• State-of-the-art explicit electromagnetic techniques have been implemented in 
XGC.

• Proof of principle KBM simulations in geometry similar to NSTX have been 
performed successfully.

27th February 2020 PPPL Theory Seminar, M. D. J. Cole et al.



Outlook
• KBMs may be key to optimized stellarator confinement –

combine stellarator and EM developments (total-f?)

• Whole volume stellarator version with islands and 
stochastic regions under development.

• Comparison to experiment planned with PPPL powder 
dropper on LHD.

• KBM modelling in spherical tokamaks such as NSTX-U –
KBM threshold is a key physics question for STs.

• Model MTMs in NSTX-U to understand e- heat flux.

• High fidelity turbulence modelling can be used to develop 
reduced models for stellarators (machine learning?).
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K. Aleynikova and A. Zocco, J. Plasma Phys. 84 0602 (2018)

W7-X (linear GENE flux tube)



Backup: electrostatic GK equations
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